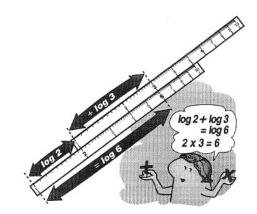


O PATRIMÓNIO VAI À AULA

RÉGUA DE CÁLCULO


Instrumento de cálculo constituído por três réguas graduadas justapostas, sendo a do meio móvel. Esta régua de cálculo é uma versão de grandes dimensões - Faber-Castell de demonstração 334/83 Novo-Duplex, com 170 cm x 47 cm x 6 cm. Tem dupla face e é constituída por 24 escalas, 12 de cada lado. Todas as escalas estão identificadas por uma letra na extremidade esquerda e no terminal está inscrita a expressão matemática correspondente, em concordância com a numeração das escalas base (C e D). A maioria das escalas está gravada a preto, a encarnado as que decorrem em sentido inverso, algumas num fundo verde para rápida localização.

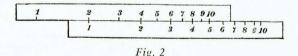
Fabricante: Faber-Castell, Alemanha, 1964 Escola Secundária de Camões, MUESC-00002

Entre os séculos XVI e XVII, a ciência gerou novas formas de cálculo e estimulou o desenvolvimento de instrumentos que vieram superar uma dificuldade da época: a prática de cálculo de expressões numéricas longas e trabalhosas, tanto nas transações comerciais como nos estudos de Astronomia e suas aplicações à Navegação. Com o estabelecimento do conceito de logaritmo, e suas propriedades, foram elaboradas tabelas, as *Tábuas de Logaritmos*, e construídos dispositivos, como as réguas de cálculo. Durante mais de trezentos anos, estas ferramentas foram fundamentais e indispensáveis, tanto no ensino como na ciência, até ao aparecimento das calculadoras eletrónicas de bolso na década de 1970.

A régua de cálculo permite a realização de operações aritméticas por meio de deslocamentos de réguas graduadas. Esta combinação de escalas logarítmicas foi sendo aperfeiçoada, com a introdução de modelos adaptados a diversos usos e diferentes profissões, até à sua forma mais moderna como a que aqui destacamos (que apresenta escalas de quadrados, cubos e superiores, de raízes, de senos e de tangentes, exponenciais, pitagórica, entre outras).

Embora com um grau de exatidão limitado, seria a suficiente para a maioria dos problemas práticos. Era um instrumento de fácil transporte, rápido e versátil na realização dos cálculos. A régua de cálculo foi utilizada por

Marson, R. (2003). FAR OUT MATH!, NASA's 2006 GLAST book (I)


estudantes e profissionais de todo o mundo e permitiu resolver problemas extremamente complexos.

A indicação para usar a régua de cálculo, nas aulas de Matemática dos liceus portugueses,

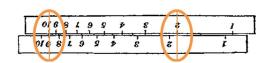
surge nas instruções pedagógicas decorrentes da reforma de 1918, nas quais era recomendado que "os alunos deviam começar a habituar-se a utilizar a régua de cálculo." Registos da sua utilização são encontrados posteriormente, com o "Projeto de modernização do ensino da Matemática no 3.º ciclo liceal" (proposta de reforma dos programas e métodos de ensino desta disciplina nos últimos dois anos do ensino liceal, lançada em 1963/1964). Foram realizadas experiências em algumas turmas e distribuídos textos aos alunos e professores das turmas-piloto. São desta década, a maioria dos exemplares que se encontram atualmente nos espólios de algumas escolas, de que é exemplo esta régua, de grandes dimensões, que era afixada na parede da sala de aula.

No *Compêndio de Álgebra* de J. Sebastião e Silva e J. D. da Silva Paulo (1960), um dos manuais adotados nos liceus portugueses, apresentam-se os princípios em que se baseia a construção e funcionamento de uma régua de cálculo.

Uma régua de cálculo consta, essencialmente, de duas escalas logarítmicas que podem deslizar uma em frente da outra, de modo a adicionarem-se ou subtrairem-se dois segmentos, cada um marcado em sua escala. Como os segmentos da escala representam logaritmos, vê-se imediatamente que o número que encima a extremidade da soma de dois segmentos é o produto dos números que encimam as extremidades de cada um dos segmentos parcelas.

No caso da fig. 2, o segmento cuja extremidade está encimada pelo número 2, na escala superior, pode ser somado com, por exemplo, o segmento cuja extremidade está encimada com o número 3 na escala inferior. A extremidade do segmento soma está encimado pelo número 6, que é o produto 2×3 . Na divisão procede-se de modo inverso.

O quadrado de um número é um caso particular da multiplicação, e portanto imediatamente se calcula.


Silva, J. Sebastião e Paulo, J. D. da Silva (1960). *Compêndio de Álgebra*, Livraria Rodrigues, Lisboa, p. 560

Escola Secundária de Camões, Biblioteca Histórica 51 PAU

Chama-se *escala logarítmica* a uma escala na qual cada ponto é assinalado, não pela sua abcissa, mas pelo número cujo logaritmo é precisamente essa abcissa. Na figura do manual (*Fig. 2*) estão representadas duas escalas logarítmicas.

Assim, a origem, que tem a abcissa 0, é assinalada com o número 1, pois $\log 1 = 0$ (tratamos aqui de logaritmos no sistema de base 10). O ponto cuja abcissa é 0,30 é assinalado com 2, pois $\log 2 = 0,30$, com aproximação até às centésimas; e o mesmo para os restantes pontos. Podemos dizer que, deste modo, a abcissa de cada número marcado é o seu logaritmo.

Na posição representada na figura do manual, resolvem-se também as multiplicações de 0,2,0,02,2000 por, por exemplo, 0,03,30,30000 fazendo-se o ajuste das casas decimais mentalmente. Mas, existem números da escala inferior que ficam fora da escala superior. Como determinar, por exemplo, 2×9 com a régua de cálculo?

decimais.

SOLUÇÃO: Desloca-se a escala inferior para a esquerda, alinhando o extremo da direita (10) com 9 da escala superior. A leitura faz-se no alinhamento com o número 2, fazendo-se mentalmente o respetivo ajuste das casas

SABER +

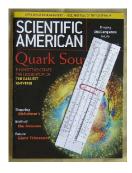
MUESC - objeto #2, exposição na ESCamões (https://muescgeral.wixsite.com/museuescola)

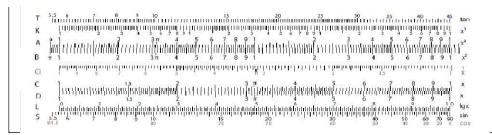
MUHNAC - Objeto do Mês, outros modelos (https://www.museus.ulisboa.pt/pt-pt/node/1407)

<u>Círculos de proporção</u>, um modelo circular (https://www.museus.ulisboa.pt/pt-pt/circulos-proporcao)

Calculadora LOGA, um modelo cilíndrico (https://www.museus.ulisboa.pt/pt-pt/calculadora-loga)

Museu Internacional da Régua de Cálculo (https://sliderulemuseum.com)


Réguas de cálculo digitais, emuladores (https://www.sliderules.org) e exemplos de aplicativos:


Google Playstore (https://play.google.com/store/apps/details?id=air.DigitalSlideRule20160505A&hl=en)

Apple App Store (https://apps.apple.com/app/digital-slide-rule/id1116881577?l=en)

Uma régua de cálculo para imprimir:

https://static.scientificamerican.com/sciam/assets/media/pdf/Slide_rule.pdf

PRATICAR I.

7.º e 8.º ano

Multiplicações e divisões

 2.3×34 1 de C em D = 2.3 ler o resultado em D sobre C = 3.4

 $11.8 \times \pi$ 1 de C em D = 1.18 ler o resultado em D sobre C = π

 $0.56 \div 35$ 5.6 de D sobre C = 3.5 ler o resultado em D sobre C = 1

 $\frac{450\times2}{17}$ 4,5 de D sobre C = 1,7 ler o resultado em D sobre C = 2

Quadrados e raízes quadradas

 $4,7^2$ ler em A sobre D = 4,7 $\sqrt{450}$ ler em D sobre A = 4,5 $\sqrt{4500}$ ler em D sobre A = 45

Cubos e raízes cúbicas

 4.7^3 ler em K sobre D = 4.7 $\sqrt[3]{4500}$ ler em D sobre K = 4.5 $\sqrt[3]{450000}$ ler em D sobre K = 450

Escalas trigonométricas

 $\sin (13^\circ)$ ler em D sobre S = 13

 $cos (11^\circ)$ ler em D sobre S = 79

 $tg(32^\circ)$ ler em D sobre T = 32

PRATICAR III.

12.º ano

Logaritmo na base 10

N.	0	1	2	3	4	5	6	
0	1 - 00	,	p	,	»	»	»	
1	0 000 000	20 -	n	· »	39	»	»	
2	3 010 300	» ·	33	39	,,	29	33	
3	4 771 213	>>	n	20	39))	29	
4	6 020 600	20	23	33	. »	»	20	
5	6 989 700	20	>>	33	, »	>>	76	
6	7 781 513	**	**	33	33	w	39	
7	8 450 980	э	39	39	33	>>	39	
8	9 030 900	>>	,,,	»	29	39	30	
9	542 425	33	39	»	20	3.	ъ	
10	0 000 000	043 214	086 002	128 372	170 333	211 893	253 059	2
4	413 927	453 230	492 180	530 784	569 049	606 978	644 580	6
2	791 812	827 854	863 598		934 217	969 100	*003 705	*0
3	1 139 434	172 713	205 739	238 516		303 338	335 389	3
4	461 280	492 191	522 883	553 36o	583 625	613 680	643 529	(
5	760 913	789 769	818 436		875 207	903 317	931 246	9
6	2 041 200	068 259			148 438	174 839		2
7 8	304 489	329 961	355 284		405 492	430 380	455 127	
	552 725	576 786			648 178	671 717	695 129	
9	787 536	810 334	833 012	855 573	878 017	900 346	922 561	1
20	3 010 300	031 961	053 514	074 960	096 302	117 539	138 672	
1	222 193	242 825			304 138	324 385	344 538	1
2	424 227	443 923	463 530		502 480	521 825	541 084	1
3	617 278	636 120	654 880	673 559	692 159	710 679	729 120	
4	802 112	820 170	838 154	856 063	873 898	891 661	909 351	1
5	979 400	996 737	*014 005	*031 205		*065 402	*082 400	10
6	4 149 733				216 039	232 459	248 816	:
7 8	313 638			361 626				1
	471 580					548 449		1
9	623 980	638 930	653 829	668 676	683 473	698 220	712917	1
30	771 213	785 665	800 069	814 426	828 736	842 998	857 214	
1	913617							
2	5 051 500							
3	185 139							1
4	314 789	327 544	340 261	352 941	365 584	378 191		
5	440 680			ALCOHOLD STATE	100.022	-		
9	440 000	453 071	403 427	477 747	490 033	002 204	514 500	1

log 1 = 0

 $\log 2 \approx 0.3010300$

 $\log 3 \approx 0,4771213$

 $\log 4 \approx 0,6020600$

 $\log 5 \approx 0,6989700$

 $\log 6 \approx 0,7781513$

 $\log 7 \approx 0.8450980$

 $log 8 \approx 0,9030900$

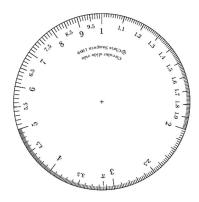
 $\log 9 \approx 0.9542425$

log 10 = 1

 $\log 20 \approx 1,3010300$

 $\log 31 \approx 1,4913617$


 $\log 45.6 \approx 1.6589648$


log 100 = 2

log 1000 = 3

Tables de Logarithmes a sept décimales,

J. Dupuis, 1880.

$$log 3$$
 Ier em L sobre D = 3

$$\log 120 = \log (1.2 \times 100) = \log 1.2 + \log 100 = \log 1.2 + 2$$

$$log 1,2$$
 ler em L sobre D = 1,2